New Article From Asthma Research and Practice: Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice

Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice

Ning Zhang, Changwen Deng, Xingxing ZhangJingxi Zhang Email author and Chong Bai

Abstract

Background

Asthma is a worldwide common chronic airway disease that cannot be cured and results in the huge burden in public health. Oxidative stress was considered an important mechanism in the pathogenesis of asthma. Hydrogen gas been demonstrated to function as a novel antioxidant and exert therapeutic antioxidant activity in a number of diseases and the function of this nontoxic gas in asthma was unclear. The purpose of the study aims to examine the effect of inhalation hydrogen gas on the pathophysiology of a mouse model of asthma.

Methods

A murine model of ovalbumin (OVA)-induced allergic airway inflammation was used in this study. Briefly, Mice were sensitized to ovalbumin and received inhalation of 67% high concentration of hydrogen gas for 60 min once a day for 7 consecutive days after OVA or PBS challenge respectively. Lung function was assessed in the apparatus with 4 channels of biological signal system. Morphology and goblet cell hyperplasia were stained by H/E and Periodic acid-Schiff staining. Cytologic classification in the bronchial alveolar lavage fluid (BALF) was analyzed by Wright Giemsa staining. Serum, BALF and lung tissue were collected for biochemical assay. One-way analysis of variance (ANOVA) was used to determine statistical significance between groups. Multiple comparisons were made by Bonferroni’s Multiple Comparison Test by using GraphPad Prism 5 software.

Results

Inhalation of hydrogen gas abrogated ovalbumin-induced the increase in lung resistance. Concomitantly, the asthmatic mice showed severe inflammatory infiltration and goblet cell hyperplasia which were reversed by hydrogen gas inhalation. Hydrogen gas inhalation reduced significantly the number of total cells, eosinophils and lymphocytes in BALF. Increased level of IL-4, IL-13, TNF-α and CXCL15 in the BALF and IL-4 in the serum were decreased significantly after inhalation. Hydrogen gas inhalation markedly upregulated the activity of decreased superoxide dismutase and significantly attenuated the increased level of malondialdehyde and myeloperoxidase.

Conclusions

Hydrogen gas inhalation improves lung function and protects established airway inflammation in the allergic asthmatic mice model which may be associated with the inhibition of oxidative stress process. This study provides a potential alternative therapeutic opportunity for the clinical management of asthma.

Download PDF

(You must be logged in to add and reply comments)

Interasma on Twitter

Interasma RT @Aller_MD: Top story: Is it a food allergy? https://t.co/ESaWtExlry, see more https://t.co/jgCeENQuZt
4hreplyretweetfavorite
Interasma RT @Aller_MD: #Dupilumab (Dupixent) is known to help control atopic dermatitis by diminishing interleukin (IL)-13, but that same mechanism…
4hreplyretweetfavorite
Interasma RT @Aller_MD: “Nasal delivery of leptin hormone may help ease breathing problems during sleep” https://t.co/kPhCp7YbFw https://t.co/mNuyNkD
4hreplyretweetfavorite
Interasma RT @Aller_MD: The 'greying' of T cells: Scientists pinpoint metabolic pathway behind age-related immunity loss https://t.co/V2QIjHJPn1
4hreplyretweetfavorite
Interasma RT @Aller_MD: The latest Allergy, Asthma & Immunology! https://t.co/Thi7i4hPcI Thanks to @GoAllergy @CochraneAirways #eehealthchoices #immu
4hreplyretweetfavorite

Editor: Juan C. Ivancevich, MD

Copyright © Interasma 2003-2017  •  Terms of Use  •  Privacy Policy  •  Contact Us  •  Sitemap

Powered by FREI SA

InterAsma